RefineNet

Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

RCUMulti-resolution fusionChained residual poolingOutput convolutions

Contributor(s)

Initial contribute: 2020-03-08

Authorship

:  
Nanyang Technological University, Singapore.
:  
guosheng.lin{At}gmail.com
:  
View
Is authorship not correct? Feed back

Classification(s)

Method-focused categoriesData-perspectiveIntelligent computation analysis

Detailed Description

English {{currentDetailLanguage}} English

Quote from:

    • https://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_RefineNet_Multi-Path_Refinement_CVPR_2017_paper.pdf
    • CNNs have shown utstanding performance in object recognition and have also been the first choice for dense classification problems such as semantic segmentation.
    • However, repeated subsampling operations like pooling or convolution striding in deep CNNs lead to a significant decrease in the initial image resolution. Here, present RefineNet, a generic multi-path refinement network that explicitly exploits all the information available along the
    • down-sampling process to enable high-resolution prediction using long-range residual connections. In this way, the deeper layers that capture high-level semantic features can be directly refined using fine-grained features from earlier convolutions. The individual components of RefineNet employ residual connections following the identity mapping mindset, which allows for effective end-to-end training. Further, introduce chained residual pooling, which captures rich background context in an efficient manner. Carry out comprehensive experiments and set new stateof-the-art results on seven public datasets. In particular, achieve an intersection-over-union score of 83.4 on the challenging PASCAL VOC 2012 dataset, which is the best reported result to date.

模型元数据

{{ModelMetaData.mp.modelName.modelName}} {{tag}} 系列名:{{ModelMetaData.mp.modelVersion.seriesName}} 编号:{{ModelMetaData.mp.modelVersion.numbering}} 目的:{{ item.label }} 修改内容:{{ModelMetaData.mp.modelVersion.changeContent}} {{tag}} {{ModelMetaData.mp.occupySpace}}

The above is part of the information. You can click here to see full information.

There is no Model Preparation about this model. You can click to add overview.

点击 查看基本信息.

{{tag}} {{tag}} {{ item.label }} {{tag}} {{tag}}

The above is part of the information. You can click here to see full information.

There is no Pre-integration Evaluation about this model. You can click to add overview.

点击 查看设计理念.

类型: {{ item.label }}

{{ModelMetaData.mo.couplingMode}}

There is no Model Orchestration about this model. You can click to add overview.

点击 查看模型架构.

{{tag}}

There is no Data Interoperability about this model. You can click to add overview.

点击 查看模型数据.

{{ModelMetaData.mdt.runTime}}
示例描述:{{item2.desc}} 名称: {{item2.name}} 类型: {{ item.label }} 值: {{item2.value}}
{{ModelMetaData.mdt.instruction}}

There is no Test about this model. You can click to add overview.

点击 查看运行测试.

{{htmlJSON.HowtoCite}}

Guosheng Lin (2020). RefineNet, Model Item, OpenGMS, https://geomodeling.njnu.edu.cn/modelItem/68bb26d9-3b79-40e2-9d61-d8a1ceb55cd9
{{htmlJSON.Copy}}

History

Last modifier
XU Kai
Last modify time
2020-12-18
Modify times
View History

Contributor(s)

Initial contribute : 2020-03-08

{{htmlJSON.CoContributor}}

Authorship

:  
Nanyang Technological University, Singapore.
:  
guosheng.lin{At}gmail.com
:  
View
Is authorship not correct? Feed back

History

Last modifier
XU Kai
Last modify time
2020-12-18
Modify times
View History

QR Code

×

{{curRelation.overview}}
{{curRelation.author.join('; ')}}
{{curRelation.journal}}









{{htmlJSON.RelatedItems}}

{{htmlJSON.LinkResourceFromRepositoryOrCreate}}{{htmlJSON.create}}.

Drop the file here, orclick to upload.
Select From My Space
+ add

{{htmlJSON.authorshipSubmitted}}

Cancel Submit
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Localizations}} + {{htmlJSON.Add}}
{{ item.label }} {{ item.value }}
{{htmlJSON.ModelName}}:
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
名称 别名 {{tag}} +
系列名 版本号 目的 修改内容 创建/修改日期 作者
摘要 详细描述
{{tag}} + 添加关键字
* 时间参考系
* 空间参考系类型 * 空间参考系名称

起始日期 终止日期 进展 开发者
* 是否开源 * 访问方式 * 使用方式 开源协议 * 传输方式 * 获取地址 * 发布日期 * 发布者



编号 目的 修改内容 创建/修改日期 作者





时间分辨率 时间尺度 时间步长 时间范围 空间维度 格网类型 空间分辨率 空间尺度 空间范围
{{tag}} +
* 类型
图例


* 名称 * 描述
示例描述 * 名称 * 类型 * 值/链接 上传


{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
Title Author Date Journal Volume(Issue) Pages Links Doi Operation
{{htmlJSON.Cancel}} {{htmlJSON.Submit}}
{{htmlJSON.Add}} {{htmlJSON.Cancel}}

{{articleUploading.title}}

Authors:  {{articleUploading.authors[0]}}, {{articleUploading.authors[1]}}, {{articleUploading.authors[2]}}, et al.

Journal:   {{articleUploading.journal}}

Date:   {{articleUploading.date}}

Page range:   {{articleUploading.pageRange}}

Link:   {{articleUploading.link}}

DOI:   {{articleUploading.doi}}

Yes, this is it Cancel

The article {{articleUploading.title}} has been uploaded yet.

OK
{{htmlJSON.Cancel}} {{htmlJSON.Confirm}}